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Abstract
Kinetically constrained spin models are schematic coarse-grained models for
the glass transition which represent an efficient theoretical tool to study detailed
spatio-temporal aspects of dynamic heterogeneity in supercooled liquids. Here,
we study how spatially correlated dynamic domains evolve with time and
compare our results to various experimental and numerical investigations. We
find that strong and fragile models yield different results. In particular, the
lifetime of dynamic heterogeneity remains constant and roughly equal to the
alpha relaxation time in strong models, while it increases more rapidly in fragile
models when the glass transition is approached.

1. Introduction

The viscosity of supercooled liquids increases extremely rapidly when the temperature is
reduced towards the glass temperature. It is firmly established that this dramatic slowing
down is spatially heterogeneous. Local relaxation is widely distributed in time—existence
of broad stretched relaxations—but also in space—existence of dynamic heterogeneity [1].
The main physical aspect is that spatial fluctuations of local relaxations become increasingly
spatially correlated when temperature decreases. Direct experimental investigations of the
time and temperatures dependences of the relevant dynamic lengthscales at low temperature
are however still missing.

To study dynamic heterogeneity, statistical correlators which probe more than two points
in space and time have to be considered [1–3]. For example, if one wants to study spatial
correlations of the local dynamics one has to define a two-point, two-time correlator,

C2,2(|i − j |, t) = 〈Pi (0, t)Pj (0, t)〉 − 〈Pi (0, t)〉〈Pj (0, t)〉, (1)

where notations are adapted to lattice spin models. In equation (1), (i, j) denote lattice sites,
Pi (0, t) quantifies the dynamics at site i between times 0 and t (autocorrelation or persistence
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functions), and brackets represent ensemble averages. The physical meaning of (1) is clear:
given a spontaneous fluctuation of the two-time dynamics at site i , is there a similar fluctuation
at site j? The quantity (1) has now been discussed both theoretically and numerically in
some detail [3–5], generically revealing the existence of a growing spatial range of dynamic
correlations in supercooled liquids accompanying an increasingly sluggish dynamics.

Logically, the next question is then: given spatial structures of the local relaxation between
times zero and t , what will this structure look like, say, between times t and 2t? In other
words [6], how do dynamic heterogeneities evolve with time? This question is in fact simpler
to address experimentally because no spatial resolution is needed and different experimental
techniques can be devised: NMR [7], solvation dynamics [8], optical [9] and dielectric [10]
hole-burning. In statistical terms, one wants to study a four-time correlation function of the
general form

C4(t1, tw, t2) = 〈Pi (0, t1)Pi(t1 + tw, t1 + tw + t2)〉, (2)

which correlates dynamics between times zero and t1 and between times t1 + tw and t1 + tw + t2.
Again the physical content of (2) is clear [11]: given a dynamic fluctuation at site i in a
certain time interval t1, how long does it take for this fluctuation to be washed out? This
leads to the general concept of a lifetime, τdh, for dynamic heterogeneity. While many
investigations [1, 2, 7, 8, 10, 12, 13] indicate that τdh is in fact slaved to the alpha-relaxation time
of the liquid, τdh ≈ τα , photobleaching experiments very close to the glass transition indicate
that τdh may become several orders of magnitude larger than τα, although in a surprisingly
abrupt manner [14].

In this paper we study the lifetime of dynamic heterogeneity in kinetically constrained spin
models of supercooled liquids [15]. These models represent schematic coarse-grained models
for the glass transition and provide a very efficient tool to study in detail many spatio-temporal
aspects related to dynamic heterogeneity such as dynamic lengthscales [16], scaling [17], or
decoupling phenomena [18, 19]. They are simple enough that analytical progress can be made
and numerical simulations performed on a wide range of lengthscales and timescales, and yet
rich enough that direct comparisons to both simulations and experiments can be made.

2. Models

Following previous works [16, 18–20], we focus on two specific spin facilitated models in
one spatial dimension, namely the one-spin facilitated Fredrickson–Andersen (FA) model [21]
and the East model [22], that respectively behave as strong and fragile systems [15]. These
are probably the simplest models which incorporate the ideas that (i) mobility in supercooled
liquids is both highly localized and sparse, as revealed by simulations [12]; (ii) a localized
mobility very easily propagates to neighbouring regions: the dynamic facilitation concept.
Detailed studies in spatial dimensions larger than one have shown that dimensionality does not
play a relevant qualitative role [17, 18, 23], and therefore justify the present one-dimensional
studies.

Both models are defined by the same non-interacting Hamiltonian, H = ∑
i ni , expressed

in terms of a mobility variable, ni = 1 when site i is mobile, ni = 0 otherwise. Dynamic
facilitation is incorporated at the level of the dynamic rules through kinetic constraints. In the
FA model, the site i can evolve with Boltzmann probability if at least one of its two neighbours
is mobile, ni−1 + ni+1 > 0. In the East model the site i can evolve only if its left neighbour is
mobile, ni−1 = 1.

We have performed numerical simulations of both models using a continuous time Monte
Carlo algorithm where all moves are accepted and the time is updated according to the
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Figure 1. Left: four-time correlation function C4(τα, tw, t2) normalized by its t2 = 0 value for
various tw = 0, 550, 2100, 5200, 20 000, 49 500, and 191 000 (from right to left) in the FA model at
T = 0.3. These dashed curves converge at large tw to the bulk persistence function, p(t2), shown
as a full line. Right: corresponding logarithmic distributions of relaxation times.

corresponding statistical weight. Simulations have been performed ‘only’ over about seven
decades in time because extensive time averaging is required to accurately measure multi-time
correlation functions such as equation (2).

3. Results

3.1. Dynamic filtering

There are several parameters involved in the four-time correlator (2) that need to be
appropriately chosen. Since dynamic heterogeneity is more pronounced for times close to
τα it is sensible to first fix t1 = τα and to study the remaining tw and t2 dependences. As a local
dynamic correlator we first focus on the persistence function [24], Pi (0, t) = 1 if spin i has
not flipped in the interval [0, t], Pi(0, t) = 0 otherwise. We also define the mean persistence,
p(t) = 〈Pi (t)〉, from which we measure τα via p(τα) = e−1.

In figure 1 (left) we show the t2 dependence of C4(τα, tw, t2) for various tw at T = 0.3 in
the FA model. We have normalized C4 by p(τα) = e−1, its value at t2 = 0. By definition, this
function describes the persistence function in the interval [tw + τα, tw + τα + t2] of those sites
which had not flipped in the interval [0, τα], and were therefore slower than average. The first
term in the correlator (2) plays the role of a dynamic filter [11], selecting a sub-population of
sites which have an average dynamics different from the bulk. From earlier works studying
the spatial correlator (1), it is known that these sites belong to compact clusters that represent
the largest regions of space with no mobility defects at time zero [16, 17, 23].

Immediately after filtering one expects therefore these slow regions to remain slow, as
indeed observed in figure 1 for tw = 0. When tw increases, this selected population gradually
forgets it was initially slow. When tw → ∞, bulk dynamics is recovered,

C4(t1, tw → ∞, t2)

p(τα)
→ p(t2), (3)

as demonstrated by the full line in figure 1. In figure 1 (right) we also show the (logarithmic)
distribution of relaxation times corresponding to the functions shown in the left panel, a
representation sometimes preferred in experimental works [1]. Both quantities are of course
fully equivalent [20]. It is clear from these figures that once a subset of sites has been
dynamically selected the remaining relaxation is narrower than the bulk relaxation. In fact, all
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persistence functions shown in figure 1 are well described by stretched exponentials. While
β = 1/2 is observed for the bulk dynamics, one finds β ≈ 0.83 at tw = 0. Accordingly,
distributions of relaxation times progressively broaden when tw increases. These results are
consistent with experimental observations.

In the FA model their interpretation is straightforward. Stretching in this model follows
from an exponential distribution of distance between mobility defects [16]. Dynamic filtering
implies that this domain distribution is cut off at small distance. Narrower lengthscale
distributions directly imply narrower timescale distributions.

We have also investigated the effect of changing the ‘filter efficiency’ [7], which in our
case implies changing the duration of the filtering interval, [0, t1]. While bulk distributions
are found for t1/τα � 1 (weak filtering), distributions shift to larger times and become very
narrow when t1/τα increases. In the following we work at constant filtering, t1 = τα.

3.2. ‘Homogeneous’ versus ‘heterogeneous’ dynamics

The ability to select a sub-ensemble of sites that are slower than average is sometimes taken
as a definition of dynamic heterogeneity [7], although lengthscales play no role in this view.
That FA and East models display spatially heterogeneous dynamics is well known, and the
results of the previous section are therefore natural.

Another indicator of dynamic heterogeneity has been proposed [11, 25, 26] based on
the analysis of the four-time correlation (2). Consider the situation where tw = 0, and
t1 = t2 ≡ t/2. In this case, one studies a ‘three-time’ correlation [26]

F3(t) = 〈Pi (0, t/2)Pi (t/2, t)〉. (4)

Two extreme behaviours can be expected for F3(t). (i) Dynamics in the intervals [0, t/2] and
[t/2, t] are totally uncorrelated, and thus F3(t) ≈ [p(t/2)]2. (ii) Dynamics in the two intervals
are strongly correlated, in the sense that those regions that survive filtering in [0, t/2] are also
those dominating the relaxation in the full interval [0, t]. In that case, F3(t) ≈ p(t). Scenarios
(i) and (ii) have been termed ‘homogeneous’ and ‘heterogeneous’, respectively, although again
lengthscales play no role in the distinction. Clearly, both estimates become equivalent when
p(t) decays exponentially.

Of course when studying the persistence function in the FA and East models, scenario
(ii) strictly applies by definition, because Pi (0, t/2)Pi (t/2, t) = Pi (0, t). In real materials,
smoother dynamic functions are studied, directly defined from the particle positions instead
of a mobility field. Our strategy is therefore to couple probe particles to our mobility field;
see [18, 19] for technical details. From probe molecule displacements, δx(0, t) = x(t)− x(0),
we define self-intermediate scattering functions, Fs(k, t) = 〈cos[k ·δx(0, t)]〉, and the analogue
of equation (4), F3(k, t) = 〈cos[k · δx(0, t/2)] cos[k · δx(t/2, t)]〉.

Our numerical results are presented in figure 2. Clearly, the time dependence of F3 closely
follows the one of Fs(k, t), in agreement with the ‘heterogeneous’ scenario described above.
This is consistent with numerical results [26].

In the present approach, this result is a natural consequence of decoupling between
structural relaxation and diffusion [18, 19]. At large wavevectors, k ∼ π , corresponding
to distances of the order of the lattice spacing, Fs(k, t) is dominated by the time distribution of
the first jump of the probe molecule in the interval [0, t], so that Fs(k, t) ≈ p(t) ≈ F3(k, t).
At large distances, k < k∗, Fickian diffusion holds [19], Fs(k, t) = exp(−k2 Dst), and
there is no distinction between homogeneous and heterogeneous relaxation. At intermediate
wavevectors, π > k > k∗, the long-time decay of Fs(k, t) is again dominated by the persistence
time distribution, because the timescale it takes a molecule to make 2π/k steps is strongly
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Figure 2. F3(k, t) and its ‘heterogeneous’, Fs(k, t), and ‘homogeneous’, [Fs (k, t/2)]2 , limits.
Left: East model for fixed k = π/5 and various temperatures. Right: East model at T = 0.4 and
various wavevectors.

dominated by the timescale to make the first step [19]. This is just the condition for the
heterogeneous scenario to hold, in agreement with figure 2. The characteristic wavevector
separating the two regimes, k∗(T ) = 1/

√
τα Ds , decreases when temperature decreases,

opening a larger heterogeneous window; k∗ also sets the upper limit of validity of Fickian
diffusion in supercooled liquids [19, 27].

3.3. Lifetime of dynamic heterogeneity

After dynamic filtering it takes some time for filtered distributions to re-equilibrate towards
the bulk relaxation, cf figure 1. To extract the typical lifetime of dynamic heterogeneity,
τdh, we tried several procedures, which all lead to similar results, based on how timescales
(time decay of persistence functions or moments of the corresponding distributions) return
to their equilibrium values. Following [13, 18] we also measured the integrated difference
between filtered and bulk dynamics, �(tw) ≡ ∫ ∞

0 dt2 [C4(τα, tw, t2)/p(τα) − p(t2)]. From
figure 1, we expect that �(tw) goes to zero on a timescale τdh. In practice, we define τdh as
�(τdh)/�(0) = e−1. In principle, τdh depends on the filtering time, t1, and on temperature, T .

We show in figure 3 results at various T but constant filter efficiency, t1 = τα(T ), in East
and FA models. While τdh is set by τα in the FA model (the tiny deviation observed in figure 3
is due to finite T corrections, which weaken when T gets lower), this is not true in the East
model, where τdh systematically grows faster than τα at low T , as emphasized in the inset.
Quantitatively a power law relationship, τdh ∼ τ 1+ζ

α , with ζ ≈ 0.06, is a good description of
the data, although an alternative fitting formula could probably be used.

In the fragile case, τdh can therefore be considered as an additional slow timescale
characterizing the alpha relaxation [14], on top of τα and 1/Ds [18]. The comparative study
of FA and East models offers a possible physical interpretation. While both models display
stretched relaxations, in the FA model stretching is constant, β = 1/2, while β increases
linearly with T in the East model [20]. Therefore, τα represents the first moment of a
distribution that becomes wider and wider when T decreases. We attribute the small but
systematic decoupling between τdh and τα to this broadening.

However, this decoupling does not explain the results of photobleaching experiments,
which show that τdh/τα increases strongly close to Tg [14]. In OTP, while τα changes by about
one decade from Tg + 4 K to Tg + 1 K, τdh/τα changes by two orders of magnitude, so that



S3576 S Léonard and L Berthier

10
-2

10
-1

10
0

10
1

10
2

t
w

/τα
0.98

∆(
t w

)/
∆(

0)
T=1.0
T=0.8
T=0.6
T=0.5
T=0.4
T=0.3

10
-2

10
-1

10
0

10
1

10
2

t
w

/τα
1.06

T=1.0
T=0.8
T=0.6
T=0.5
T=0.35

0.4 0.6 0.8 1
T

3

4

5

6

7

τ dh
/τ α

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Figure 3. Integrated difference between filtered and bulk dynamics at constant filtering time,
t1 = τα , and various temperatures in the FA (left) and East (right) models. Times have been
rescaled to collapse the data points at various temperatures and extract the lifetime of dynamic
heterogeneity, τdh. In the FA model, τdh is set by τα with tiny corrections that vanish at low T .
In the East model, τdh grows faster than τα , as emphasized in the inset showing the systematic
increase of τdh/τα as T decreases. Master curves are fitted by stretched exponentials shown with
full lines, β = 0.75 (left) and β = 0.8 (right).

ζ ≈ 2. This value is much too large to be accounted for by the above results. Presumably,
also, β does not vary much on such a tiny temperature interval. From the present perspective,
additional phenomena such as non-equilibrium effects due to the proximity of Tg must be
invoked to understand photobleaching experiments. Instead, we were able to predict a smaller,
but definitely non-vanishing, decoupling between the lifetime of dynamic heterogeneity and
the alpha-relaxation time which could be detected in dynamic filtering experiments performed
in a sufficiently large temperature window in fragile glass-formers.
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